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Abstract. In the big data era, while correlation detection is relatively
straightforward and successfully addressed by many techniques, causal-
ity detection does not have a generally-used solution. Causality provides
valuable insights into data and guides further studies. With the overall
assumption that causal influence can only be from prior history events,
time plays an essential part in causality analysis, and this important fea-
ture means the data with strict temporal structure needs to be modelled.
Traditionally, temporal point processes are employed to model data con-
taining temporal structure information. The heuristic parameterization
property of such models makes the task difficult. Domain related knowl-
edge are needed to design proper parameterization. Recently, Recurrent
Neural Networks (RNNs) have been used for time-related data modelling.
RNN’s trainable parameterization considerably reduces the dependency
on domain-related knowledge. In this work, we show that combining
neural network techniques with Granger causality framework has great
potential by presenting an RNN model integrated with a Granger causal-
ity framework. The experimental results show that the same network
structure can be applied to a variety of datasets and causalities are
detected successfully.
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1 Introduction

In the big data era, extracting and understanding relations between data has
become increasingly important. The goal is to analyse how influence flows
between events from different sources or dimensions, i.e., whether one event’s
behaviour is affected by an earlier event and if so estimating the strength of that
influence. Researchers have shown that many fields can benefit from causality
detection.

Granger causality has been shown to be a reliable causality analysis method
in fields including econometric [6] and neuroscience [8]. However, the number of
the application scenarios of traditional Granger causality is significantly limited.
The Granger causality utilizes the dependency between historical events and
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present events to detect causal relations. For most sequence data, the depen-
dency is complicated, but in most cases, a simple linear dependency is assumed,
i.e. the value of the current event is a weighted sum of the past events. This over-
simplified linear parameterization cannot capture complex dependencies, thereby
limiting the performance of Granger causality applications and restricts appli-
cation scenarios to regression problems on regular time grids. Efforts are made
to overcome these limitation by employing radial basis function [1,10], kernel
method [11] or locally linear neighborhoods [3,5]

Regarding sequence data modelling, point process models allow the training
of sophisticated parameterized models with a maximum likelihood approach [2,
12]. Traditional point process models also have limitations. One limitation is
that the sophisticated parameterization needs to be heuristically designed to
suit the dependencies of the real world data. Thus, domain related knowledge
plays an essential role in the model design. Heuristic parameterization also makes
designed model not reusable through different domains. Recently, a recurrent
neural network based model called Recurrent Marked Temporal Point Process
(RMTPP) [4] was proposed targeting the heuristic parameterization problem for
marked point process models, and achieved state-of-the-art results. This model
solved the heuristic parameterization problem by approximating the dependency
using a recurrent neural network. Experiments showed that the RMTPP model
well approximated different one-dimensional point process models with minor
hyperparameter tweaking and zero prior knowledge of the true parameterization.

In our work, we aimed to show that the advantage of recurrent neural network
based models can be combined with Granger causality framework and provide a
domain independent Granger causality detection model. The Granger causality
is designed to explicitly detect causality between different dimensions, i.e, the
model of each dimension should be independent given the input data. Here we
can consider dimensions to be different event sources. To solve the dimension-
wise modelling problem, we proposed the Recurrent Multi-dimensional Temporal
Point Process (RMDTPP) model that can effectively model multi-dimensional
data.

We tested our model on both data on regular time grids (the time differences
are constant one and not explicitly modelled) and data with real-valued times-
tamps (the time differences are explicitly modelled as real value). Experimental
results showed that RMDTPP can be integrated into the Granger causality
framework seamlessly. Causality between dimensions are successfully detected
and the RMDTPP model can be applied to different data without parameteri-
zation changing.

2 A Review of Multi-dimensional Point Process

2.1 Multi-dimensional Point Process

Point process is commonly used to study sequence data. Normally, one sequence
contains multiple event points, each event point has a timestamp describing the
time that the event is observed of the time that the event happens. When will
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the next event happen is affected by all the previous events. If all the events are
generated from one source, we use one-dimensional point process to model the
data sequence. Combining multiple one-dimensional point processes with extra
parameters capturing interactions between them leads to a multi-dimensional
point process. In a multi-dimensional point process, more than one dimension
can evolve at the same time and influence each other. One multi-dimensional
point process can be uniquely defined by it conditional intensity function (CIF)
λ∗(t). Here * serves as a reminder that the function is conditional on the past,
as first introduced by Daley and Vere-Jones [7]. The CIF describes how many
events are expected to occur in an arbitrary time interval. Dimensions can self-
intervene or cross intervene in a multi-dimension point process, which means
that the intensity of one dimension receives the historical influence from all
dimensions.

If we take a multi-dimensional Hawkes point process as an example, the CIF
of the multi-dimensional Hawkes is defined as follows:

λ(t)m∗ = λm
0 +

M∑

n=1

∑

tni <t

αmne−βmn(t−tni ), (1)

where λm
0 is the initial intensity of m dimension, αmn and βmn are employed to

capture the influence flowing from n dimension to m dimension [9,13]. The size
of matrix α and matrix β is M × M if there are in total M dimensions.

The heuristic parameterization problem refers to that the parameterization
shown in (1) specifies how the point process evolves. Each event from one dimen-
sion stimulates the intensity at the same strength. The intensities of all dimen-
sions gradually decay over time. Only the sequence data that roughly follows
the specified evolving pattern can be well modelled. Thus, before we define any
CIF for a dataset, we need to know how the data evolves, which is not always
possible.

If we treat the length of time interval between two consecutive events as a
random variable, the distribution of this random variable can be specified and
calculated by a conditional density function f∗(t). One CIF is corresponding to
one conditional density function via

fm∗(t) = λm∗(t) exp

(
−

∫ t

tj

λm∗(s)ds

)
. (2)

The likelihood of the point process of dimension m is the product of the con-
ditional density values of each event. One thing to notice, in a multi-dimensional
point process, the process of each dimension ends at the same time, i.e. the
domain [0, T ] of all dimensions are the same. However, the last event of one
dimension may not happen at the timestamp T, which means that the process
of one single dimension does not end with the last event on that dimension.
Normally, we add a pseudo event for each dimension at timestamp T with the
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intensity λm∗(T ) = 1. We denote the number of events in dimension m including
the pseudo event as Lm and tmi is the timestamp of ith event in dimension m,
tmLm

= T and tm0 = 0. We have

L(Dm) =
Lm∏

i=1

fm∗(tmi ) (3)

=
Lm∏

i=1

λm∗(tmi ) exp

(
−

∫ tmi

tmi−1

λm∗(s)ds

)
. (4)

When i = Lm, we have

λm∗(tmi ) exp

(
−

∫ tmi

tmi−1

λm∗(s)ds

)
= exp

(
−

∫ tmi

tmi−1

λm∗(s)ds

)
, (5)

which is the likelihood of the process from the last real event of dimension m to
the end.

As described above, in a multi-dimensional point process, the intensity of one
dimension is under the influence of the events from all other dimensions. During
the interval from tmi−1 to tmi , events from another dimension may happen and
bring sudden changes to the intensity of dimension m. Thus, the integration has
to be done piecewise as

L(Dm) =
Lm∏

i=1

λm∗(tmi ) exp

(
−

∫ tmi

tmi−1

λm∗(s)ds

)
(6)

=

(
Lm∏

i=1

λm∗(tmi )

)
exp

(
−

∫ T

0

λm∗(s)ds

)
(7)

=

(
Lm∏

i=1

λm∗(tmi )

)
exp

⎛

⎝−
L∑

j=1

∫ tj

tj−1

λm∗(s)ds

⎞

⎠ , (8)

where L is the total number of events produced by the multi-dimensional point
process plus the pseudo-event at the end of the domain at timestamp T . The
likelihood function of a multi-dimensional point process is the product of the
likelihood of each single dimension point process as

L(D) =
M∏

m=1

L(Dm) (9)

=
M∏

m=1

(
Lm∏

i=1

λm∗(tmi )

)
exp

⎛

⎝−
L∑

j=1

∫ tj

tj−1

λm∗(s)ds

⎞

⎠ . (10)
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3 The Proposed Approach

3.1 Recurrent Multi-dimensional Temporal Point Process

While one hot is a group of bits where only one bit is allowed to be 1 and
the rest are 0, many-hot allows as many bits to be 1 as needed. Simultaneous
events can be easily represented by setting the corresponding bits to 1. In the
RMDTPP model we use the many-hot representation to allow simultaneous
events. The input of RMDTPP at step i contains the many-hot representation
of the observation yi and the time difference di = ti − ti−1. The hidden units
of the RNN now should contain all the historical information needed to predict
the conditional intensity of the selected dimension.

We adopted the CIF parameterization from RMTPP model [4] as

λ∗(t) = exp(v� · hj + w(t − tj) + b), (11)

where hj is the output of the RNN and v�, w as well as b are learnable param-
eters. Then according to Eq. (2), the conditional density function is

log f∗(t) = v� ·hj+w(t−tj)+b+
1
w

exp(v� ·hj+b)− 1
w

exp(v� ·hj+w(t−tj)+b).

(12)
Equation (10) shows that the calculation of likelihood of dimension m only

requires the conditional intensity value λm∗(t) and the integral of CIF between
two events as Λm

ti+1
= exp

(
− ∫ ti

ti−1
λm∗(s)ds

)
. Thus, at each step, we let the

RMDTPP model outputs λm∗(t) and Λm
ti+1

.
In a formal way, given an M dimensional sequence data D � {(ti, ỹi)},

i = 0, ..., L, where L− 1 is the total number of events in the sequence. ti ∈ [0, T ]
is the time stamp of event i, t0 = 0, tL = T and ỹi ∈ {0, 1}M is the many-hot
representation of the dimensions of event i, (ỹi)m is the mth elements of ỹi.
Notice that there should be no ỹ that every element of ỹ is zero. That is for
any ti in D, there is at least one event is observed at that timestamp. Here, we
make the start point (t0, ỹ0) and the end point (tL, ỹL) of the point process as
pseudo events to simplify our work and ỹ0 = ỹL = (0, 0, ..., 0)T . RMDTPP model
maximizes the likelihood of point process of dimension m with duration T :

L(Dm) =
L∏

i=1

[λm∗(ti)](ỹi)m exp

(
−

∫ ti

ti−1

λm∗(s)ds

)
. (13)

With the output of the RMDTPP, we can compute the likelihood of the dimen-
sion Lm and use backpropagation to train the whole model in a maximum like-
lihood fashion. The structure of the RMDTPP model is shown in Fig. 1.

Another advantage of RMDTPP is that at each step after the output of RNN
is computed, the likelihood calculation of each dimension can be run in parallel.
We call the parallel training process as joint training. The hidden units in a
joint training model should compress all the historical information instead of
the information needed by a single dimension.
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To achieve joint training, we initialize weights v, w and b for each dimension.
At each step, the output of the RNN is sent to each dimension, and from here the
operations of each dimension are done independently and simultaneously. The
likelihood is now the joint likelihood of all the dimensions, i.e. the product of
the likelihood of each dimension. During the backpropagation phrase, the hidden
layer of the RNN is updated by the gradients from all dimensions and the RNN is
forced to learn a history representation that compresses the information needed
by every dimension.

Fig. 1. Structure of RMDTPP model. M is the number of dimensions. As shown in
the figure the conditional intensity and integral calculation of each dimension can run
in parallel

3.2 Discrete RMDTPP

For data on a regular time grid, the length of each grid cell is fixed, which means
that the time difference d between two time steps is a constant. In this case,
the temporal structure of the data is simple and does not need to be modelled
explicitly.

The input data is now a matrix D of M rows and T columns where M is the
number of dimensions, and T is the length of the data. One row in D corresponds
to the events record of one dimension. Dn,t = 1 if a event from dimension n is
observed at time step t, else Dn,t = 0. Notice that in this setup, each column in
D is a many-hot representation.
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Fig. 2. Discrete RMDTPP structure

As shown in Fig. 2, the input of the discrete RMDTPP at time step t is
simply the elements at the corresponding column D:,t and the output is a vector
of predicted probabilities P (D:,t+1 = 1|ht). The likelihood that the discrete
RMDTPP tries to maximize is:

log L(Dn) =
T∑

t=1

M∑

n=1

Dn,tP (Dn,t = 1|ht) + (1 − Dn,t)P (Dn,t = 0|ht). (14)

3.3 Granger Causality

In this work we adopted the Granger causality defined by likelihood reduction
[8]. The general idea is that for two dimensions X and Y , if the historical events
of X contribute to the prediction of feature events of Y , then we say dimension
X Granger-causes Y . The reason we use ‘Granger-cause’ or ‘g-cause’ in short
instead of ‘cause’ is that there is a gap between the Granger causality and the
real causality in terms of philosophy. The prediction contribution is measured
by likelihood reduction. First, we train a model to use both historical events
from dimension X and dimension Y to predict the feature event of Y . We use
the model to calculate a likelihood L(Y ) of the events of dimension Y . Then we
train a new model to use only the historical events from dimension Y to predict
the feature event of Y . We use the new model to calculate a new likelihood L̂(Y )
of the events of dimension Y . If L̂(Y ) − L(Y ) < 0 then we say X contributes to
the prediction of Y .
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The detailed framework is introduced in Algorithm 1. Then the causality will
be predicted according to the resulting likelihood reduction matrix.

Data: The training and testing dataset Dtrain and Dtest

The number of dimensions M

Result: Likelihood reduction matrix Φ

Φ = M × M zeros matrix;

rmdtpp = RMDTPP.initialize(M);

rmdtpp.train(Dtrain);

L(Dtest) = [L(Dtest 1), ..., L(Dtest M )] = rmtpp.predict(Dtest);

for m = 1; m ≤ M ; m = m + 1 do

D′
train = Dtrain − Dtrain m;

D′
test = Dtest − Dtest m;

rmdtpp = RMDTPP.initialize(M-1);

rmdtpp.train(D′
train);

L(D′
test) = [L(Dtest 1), ..., L(Dtest m−1), L(Dtest m+1), ..., L(Dtest M )] =

rmdtpp.predict(D′
test);

for n = 1; n ≤ M ; n = n + 1 do

if n < m then
Φn,m = L(D′

test)n − L(Dtest)n
end

else
Φn,m = L(D′

test)n − L(Dtest)n+1

end

end

end

Algorithm 1: Granger causality detection process

4 Experiment

4.1 Dataset and Evaluation Metric

To demonstrate the capacity of RMDTPP model, we first test our model on a
three-dimensional piecewise homogeneous Poisson process dataset. The homo-
geneous Poisson point process is one of the most simple point processes. If we
treat the time difference between two adjacent events in a homogeneous Poisson
point process as a random variable r, then r obeys an exponential distribution.
The probability density function of an exponential distribution is λe−λx when
x > 0 and 0 when x ≤ 0. The λ is a positive parameter. The intensity of a
homogeneous Poisson process will be constant 1

λ . We generate 1,000 sequences,
each of them containing 300 events. 300 sequences are randomly chosen to serve
as the test set. The rest 700 serve as the training set.

We also adopted the neural activity simulation (NAS) framework specified by
[8]. A dataset containing 20 sequences is generated to test the discrete RMDTPP
model. Each sequence contains 100,000 events from 5 different dimensions. Half
of the dataset is used as training set and the other half is used as testing set.
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Then the discrete NAS dataset is converted into a continuous NAS dataset by
removing all the time step where there are no events observed and the time
difference between events is calculated as integer.

Moreover, a four-dimensional Hawkes point process dataset is generated.
Both the four-dimensional Hawkes point process dataset and the continuous
NAS dataset are used to test the continuous RMDTPP model.

The causality ground truth is obtained according to the parameters the
parameters of the data generation frameworks. If the parameters of the data
generation model indicate that events from dimension A increase or decrease
the intensity of dimension B then we consider that there is a causal relation
from A to B.

We treat the causality detection as a binary classification problem. The
receiver operating characteristic curve (ROC) and area under curve (AUC) are
used for performance measurement. Higher AUC indicates a better classification
performance.

4.2 Experiment Results

To demonstrate the data fitting performance of the RMDTPP model, we first
test our model on the three-dimensional piecewise Poisson process dataset.

As shown in the Fig. 3, The RMDTPP model successfully predicts the con-
ditional intensity value, captures the un-natural sudden change of the intensity
and predicts intensity to be zero when the process of that dimension finishes. It
is worth noticing that the model is trained using maximum likelihood approach.
The model is not directly trained to minimize the gap between the predicted con-
ditional intensity value and the true value. The result shows that our RMDTPP
model can approximate the true CIF with no priori knowledge about it.

Then we combine the RMDTPP model with the Granger causality frame-
work. The causality detection performance of the discrete RMDTPP model is
tested on the discrete NAS dataset. The resulting likelihood reduction matrix
and the ground truth causality matrix is shown in Fig. 4(a) and (b). We also test
the causality detection performance of the continuous RMDTPP model on the
continuous NAS dataset. The resulting likelihood reduction matrix is shown in
Fig. 4(c). The ROC curve of both continuous and discrete NAS data is shown in
Fig. 4(d).

Considering that the NAS dataset is not a natural continuous time dataset,
we then test the causality performance on the four-dimensional Hawkes point
process dataset. The results are shown in Fig. 5.

The experiments results are reported in Table 1. The first row is the per-
formance of the NAS model [8]. The NAS model itself is a discrete time point
process. NAS dataset can be seen as the results of performing sampling operation
on the corresponding NAS model.

From the comparison, we can see that the performance of discrete RMDTPP
matches the performance of the NAS model which has full awareness of the true
parameterization. Continuous RMDTPP model is outperformed by both NAS
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Fig. 3. Predicted intensity of the three-dimension piecewise Poisson process toy
dataset.

model and discrete RMDTPP model on the NAS dataset. Part of the reason is
that the likelihood reduction value is closely related to the true likelihood that
is calculated with the full dataset. Likelihood reductions are calculated based
on the true likelihood. The fluctuation of the true likelihood increases after we
make the RMDTPP model to learn the real-valued time difference. As a result,
it is harder to find a reasonable threshold for all dimension pairs.

No previous application of the Granger causality framework with traditional
continuous time point process models can be found. Since that the causality can
be easily identified via the learned parameters model.

Table 1. Model AUC value comparison

NAS 4 dimensional hawkes point process

NAS model 1.0 N/A

Discrete RMDTPP 1.0 N/A

Continuous RMDTPP 0.83 0.72
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Fig. 4. The likelihood reduction matrices and the ROC curves.

However, only continuous RMDTPP model can work with both the NAS
dataset and the multi-dimensional Hawkes point process dataset. The only
hyperparameter that has to be manually adjusted is the size of the RNN units,
which can be decided by observing the likelihood results and picking the one with
the highest likelihood. Thus, we can say that combining RMDTPP model with
Granger causality has a high potential. In discrete cases, the discrete RMDTPP
model is practically usable. The heuristic parameterization problem of tradi-
tional point process model is overcome allowing Granger causality to be applied
to various scenarios.
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(a) Likelihood reduction of 4-
dimensional Hawkes point process.
In order to show heat map clearly, the
max likelihood reduction is clamped to
70

(b) ROC curve of causality detection on
4-dimensional Hawkes point process.

Fig. 5. Resulting Granger causality matrices.

5 Conclusion

In this work, we propose the recurrent multi-dimension temporal point process
model. RMDTPP model is inspired by the mathematical definition of the multi-
dimensional point process. A separate likelihood calculation of each dimension
allows seamless integration with Granger causality framework. Granger causality
detection experiments show that the same RMDTPP model can be applied to
various sequence data. The RMDTPP model also has limitations. In this condi-
tional intensity function, w is a learned constant scalar value, which means that
the time difference between the last event and current time (t− tj) can only lin-
early influence the current conditional intensity in log space. This feature is not
true for all temporal point process models. It is possible to give the conditional
intensity function a more flexible parameterization. Despite of the limitations,
we proved that the combining neural network work techniques with Granger
causality leads to a powerful model. The heuristic parameterization problem is
overcome and causal relation between dimensions can be detected. Our work
enables the application of Granger causality on sequence data from any domain.
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